Mobilization of Normal and Leukemic Stem Cells

Goldenberg Lecture University of Toronto/PMH November 19, 2009

John F. DiPersio MD, PhD Division of Oncology Siteman Cancer Center Washington University School of Medicine

Normal Bone Marrow Microenvironment

- Composed of diverse population of stromal cells, osteoblasts, and osteoclasts¹
- Extracellular matrix rich in fibronectin, collagens, and proteoglycans¹
- To enter circulation, stem cells must migrate through vascular barriers¹
- Adhesion molecules (eg, SDF-1 and VCAM-1) tether stem cells to the bone marrow¹

CXCR4, chemokine receptor 4; HA, hy aluronic acid; HSC, hematopoietic stem cell; KL, kit ligand; SDF-1, stromal cell-derived factor-1; VCAM-1, vascular cell adhesion molecule-1; VLA-4, very late antigen-4.

1. Pusic I, et al. Curr Pharm Des. 2008;14:1950-1961. 2. Cashen AF, et al. Future Oncol. 2007;3:19-27.

AMD3100 (plerixafor)

- A bicyclam molecule
- Reversibly binds to CXCR4 receptor and blocks SDF-1 interaction
- Very water soluble
- Highly charged
- Low molecular weight (MW = 502)
- Rapidly increases mobilization of CD34+ hematopoietic stem cells

Phase III trials in the US, Canada and Germany*

NHL Patients (%)^a Achieving \geq 5 × 10⁶ CD34+ Cells/kg by Apheresis Day – ITT Population

CI, confidence interval; HR, hematologic response; ITT, intention-to-treat; NHL, non-Hodgkin's lymphoma. ^a Percentage of patients achieving collection goal expressed as Kaplan-Meier estimate.

DiPersio JF, et al. JCO, 2009

Secondary Efficacy: Patients Achieving ≥ 2 million CD34+ cells/kg in 4 Days of Apheresis							
Intent-to-Treat Population							
Outcome	Plerixafor	Placebo	Estimate of	p-value*			
	(n=150)	(n=148)	Treatment Effect				
			[95% CI]				
Success	130 (86.7%)	70 (47.3%)	39.4% ^A	< 0.0001			
			[29.7%, 49.1%]				

^A Treatment effect estimated using difference in chance of success

* p-value of difference in proportions using Pearson's Chi-Squared test

DiPersio et al JCO, 2009

What about AMD3100 to mobilize allogeneic PBSC? Questions:

- How will AMD3100 affect homing properties of CD34+ cells?
 - Will engraftment be impaired?
 - What is the half-life of AMD3100 on CXCR4?
 - Will there be downregulation of CXCR4 and dysfunctional homing?
 - How will other cells expressing CXCR4 be affected?
 - T-cells (GvHD, immune reconstitution)
 - Dendritic cells

Murine Competetive Repopulation Studies:

Lineage Specific Chimerism after Competitive Repopulation

Granulocytes

B-lymphocytes

G-CSF, AMD3100, and G-CSF plus AMD3100 on Engraftment and GVHD

Model A (severe GVHD): 900 cGy irradiated recipients and 2 x 10⁶ allogeneic T cells Model B (moderate GVHD): 900 cGy irradiated recipients and 5 x 10⁵ allogeneic T cells Model C (graft failure): 500 cGy irradiated recipients and 2 x 10⁶ allogeneic T cells

Conclusions

1. Stem cells mobilized with G vs. G+A vs. A have identical early repopulation capacity

2. T cells mobilized with G vs. G+A vs. A have identical GvHD and engraftment potential

Design: AMD3100 Allogeneic Stem Cell Mobilization Study

Devine SM, et al. Blood. 2008;112:990-998.

Allograft Composition (n = 22)

	AMD3100	G-CSF*	<i>P</i> Value
CD34 (x10 ⁶ /kg)	3.1 (1.2-6.3)	4.2 (2.5-18.7)	0.006
CD3 (x10 ⁸ /kg)	4.7 (1.5-7.8)	1.5 (1.2-6.8)	0.006
CD4 (x10 ⁸ /kg)	3.1 (1.0-5.7)	1.1 (0.7-3.2)	0.002
CD8 (x10 ⁸ /kg)	1.3 (0.4-3.4)	0.4 (0.3-3.4)	0.08
CD56 (x10 ⁷ /kg)	2.8 (0.2-4.6)	0.2 (0.1-0.5)	0.2

*includes 8 donors mobilized by both AMD3100 and G-CSF

Devine et al Blood, 2008

AMD-ALLO: GVHD (n = 38)

AMD-ALLO: Overall Survival (n = 38)

Optimal Effect of AMD3100: Cmax vs AUC

Transplant with PBSC mobilized with Apheresis **SC AMD3100** -6 hours -5 days Donors PK/PD 22-43 AMD3100 AMD3100 IV over 30 min $240 \ \mu g/kg \ SC$ 80, 160, 240, 320, 400, 480 µg/kg

Dose Response of CD34⁺ Cell Mobilization by IV AMD3100

320 µg/kg IV AMD3100: Subset Analysis

Blood cell counts, total CD34 cells, and SRC frequencies after administration of AMD3100 (240μg/kg) or G-CSF (10 μg/kg/day).

	WBC, x10 ³ /mL				
Mobilizing agent	0 hours	4 hours	Total CD34 ⁺ , Cells/μL SRC Frequency, x10 ⁶ MNC		SRC Frequency x10 ³ CD34 ⁺
AMD3100	6.5±0.3	19.1±0.6	2.9±1.0	1 in 8.7	1 in 117
G-CSF	7.0±0.5	39.0±3.0	6.2±3.2	1 in 29	1 in 177

ND indicates not determined; Eng., engrafted; SRC, NOD/SCID repopulating cells

Genes Differentially Expressed in Human Peripheral Blood CD34⁺ Cells Following Mobilization with AMD3100 or G-CSF

GTPase, IMAP family member 8; PIM1 = Pim-1 oncogene; S100A8 = S100 calcium binding protein A8; SOCS3 = Suppressor of cytokine signaling 3; TMEM49 = Transmembrane protein 49; BCL-2 = B-cell CLL/lymphoma 2; CLC = Charcot-Leyden crystal protein; CXCR4 = Chemokine (C-X-C motif) receptor 4; C200rf118 = Chromosome 20 open reading frame 118; DNTT = Deoxynucleotidyltransferase, terminal; IRF8 = Interferon regulatory factor 8; PRG2 = Proteoglycan 2; RASD1 = RAS, dexamethasone-induced 1; RNASE6 = Ribonuclease, RNase A family, k6; UHRF1 = Ubiquitin-like, containing PHD and RING finger domains, 1

AMD3100 Preferentially Mobilizes a CD34^{dim} Subset

Co-expression of CD45RA on CD34⁺ cells identifies the CD34^{dim} subset

RA+34^{dim}
RA+34+
RA-34+
$$0$$
 20 40 60 80 100
percent

Expression of CD123 (IL-3Rα) and CXCR4 on CD45RA⁺CD34^{dim} Cells

Figure 1 E2-2 function in the plasmacytoid dendritic cell (PDC) developmental pathway. DC development proceeds from hematopoietic stem cells (HSCs) through a common DC progenitor (CDP). Hypothetical precursors for PDCs (pre-PDC) may be specified by the differential expression or activation of transcription factors within CDPs. In the PDC lineage, E2-2 regulates terminal development and interferon production by controlling PDC-related genes.

In vitro IFNα assay

Control = GpCTLR9 = CpG

N=46 allografts N=23 (50%) of patients at risk for CMV N=5 (21%) developed viremia N=0 (0%) developed CMV disease

CD62L expression on T lymphocytes

Figure 12. CD62L expression on T lymphocytes. In 5 donors, CD62L expression was assessed on donor T cells before and after treatment with AMD3100 (6 h after 240 μ g/kg) or G-CSF (250 μ g/kg/d x 5d). Flow cytometric analysis was performed using monoclonal antibodies to CD3, CD4, CD8, and CD62L. The fold change in CD62L mean fluorescence intensity (MFI) was calculated relative to pre-treatment values.

AMD3100 Allogeneic Stem Cell Transplant Trial: Overall Survival

- XRT only (n=6)
- ---- pre-AMD3100 (n=19)
- 🗕 post-AMD3100 (n=23)

Adhesion Molecules and HSC Mobilization

Nervi B, Link DC, DiPersio JF. J Cell Biochem. 2006;99:690-705.

BIO5192 Blocks Binding of Jurkat Cells to Soluble VCAM-1

Kinetics of Murine Progenitors Mobilization in Response to BIO5192 and Plerixafor

Additive Mobilization of Murine Progenitors After Combination of Plerixaflor SC and BIO5192 IV

Additive Effect on Murine Progenitor

Increased mobilization of progenitors by G-CSF in splenectomized mice

Effect of Splenectomy on AMD3100 and BIO5192 Induced HSC mobilization

Long term repopulating assay Peripheral blood mobilized

Recipient

HSC competitors

BM competitor

B6 5.1 **Bone marrow** mononuclear cells

Engraftment of Mobilized HSC Primary Recipients

Environment-Mediated Drug Resistance

Meads M, et al. Nature Reviews Cancer 2009;9:665-674.

Stroma-leukemia contact

Hypothesis: Interruption of Stroma-leukemia cell contact and/or inhibition of stromainduced signaling in leukemia cells will result in proliferation apoptosis, differentiation and *sensitization to genotoxic stresses such as chemotherapy*

Stroma-leukemia signaling

M2-10B4 Stromal Cell Line Provides In Vitro Chemoprotective to APL Cells

Effect of stroma on APL proliferation and spontaneous apoptosis

Reduced Proliferation of APL Cells in the Presence of M2-10B4 Stromal Cells

Effect of stroma on mTOR pathway phosphorylation

Increased sirolimus-induced APL apoptosis in presence of stromal cells

APL ENGRAFTMENT

AMD3100 Mobilization of mAPL

Nervi B, et al. Blood 2009;113:6206-6214.

Mobilization of leukemia cells increases the efficacy of anti-leukemic chemotherapy

Day 12 Day 13

AraC (500mg/kg/sc); Doxo (10mg/kg/sc); AMD (5mg/kg/sc)

AMD3100 enhances effect of chemotherapy

Nervi B, et al. *Blood* 2009;113:6206-6214.

AMD3100 enhances effect of chemotherapy

Nervi B, et al. *Blood* 2009;113:6206-6214.

Phase I/II Study of AMD3100 + MEC in Relapsed or Refractory AML

Day 0	Day 1	Day 2	5 Day 3	Day 4	Day 5	on d 1 -
Mobilization studie_s			S <u>E</u> toposide			
			<u>M</u> itoxantron	e 8	mg/m ² V	on d1-
3.Blastct < 30,000	3 / m m					
	PS < 2		Dose leve	13240		Qon
relapse, must have CR1 duration <			Dose leve	e I 2 1 6 0		Q on
orrelapsed disease (Forpts in 1			d 0 - 5			
1.D x of AML and eit		actory	Dose leve	e I 1 8 0		Qon
Eligibility Criteria			A M D 3 1 0 0			

EC

EC

E

E C

EC

Patient Demographics (n=40)

Age, median yrs (range)	49 (19-71)
Gender	
Male	1 9
Female	2 1
Cytogenetics	
Core Binding Factor	6
MLL translocation	4
Normal	2 4
Complex (<u>></u> 3 abn)	6
Treatment indication	
"t 1 relapse, 1 salvage	30 (median CR 1224 days)
1° refractory	8
°t 1 relapse, 2 salvage 	2

Toxicities from Phase I

- No dose limiting toxicities have been observed, no hyperleukocytosis
- Neutrophil recovery at median 29.5 days (range 19-37)
- Platelet recovery at median of 26 days (range 21-40)
- Nonhematologic toxicities
 - 12/12 Febrile neutropenia
 - 1 pt with Grade 4 opportunistic infection (Aspergillus sinusitis) requiring debridement
 - 1 pt Grade 2 bradycardia
 - Grade 3 hypotension, diarrhea, colitis, confusion, back pain observed in 1 each and thought to be unrelated to administration of AMD3100
 - Grade 3 hypokalemia (<3) observed in 2 patients

Response Evaluation

	Alldoses	240 m cg/kg
	(n = 43)	(n = 37)
C R	1 7	1 5
C R i	3	3
Total Responses	2 0	1 8
Persistent Disease	2 1	1 7
Early Death	2	2
Failures	2 3	19
Overall Response Rate	4 6 %	4 9 %

*Response Evaluation per IWG Criteria for AML, Cheson *et al.*, JCO 200

Historical RR with MEC

	Patients	C R Rate	0 S	MEC Regimen
Tellmen	38 elig / 49 Rei / Ref	2 4 %	2.5-3.5 m o s	10 mg/m2 x5 or 6
MEC+/-CSP	~47% Refractory			100 mg/m2 x5 or
Cancer 1999				8 0
Greenberg	63 v s 66 p t s	17 vs 25%	4.6 vs 5.4	8 mg/m2 x5
MEC + / - Valapodar	51% E a r i y		m o 8	100 mg/m2 x 5
2 0 0 4	Rei/Ref			1g/m2x5
Feld men	191	28% vs36%	156d - 5.5	8 mg/m2 x 6
Lintuzum ab +/-	Refractory or <	CR+CRP	m o s	100 mg/m2 x6
M E C	1 yr C R duration			1g/m2x6
JC 0 2 0 0 5				
¢ 11• •	177 vs. 86 pts			Laromuatina 600
Laromustine +	First relapse	35% vs19%	128 vs176	mg/W2 onday 2
НДАС	~ 50:50 < 60;	CR+CRP	day s	HDAC 1.5 gm / M2
Vs.HDAC	. e A			days 1–3 CVI
Uy/DiPersio	First Ref/Rel	4 9 %	NR	8 mg/m2 x 5
MEC + A M D 3 1 0 0	N - 4 7			100 mg/m2
				x 5

1 g / m 2 x 5

Effect of SC AMD3100 (240 mcg/kg) on AML Blast Mobilization

Surface CXCR4 Expression & Response

Mobilization of AML Blasts & Response

Peripheral Blood FISH post AMD3100 Mobilization

Patlant 4	Proba	Time Post AMD 3100 (#FISH+ ce		c • • / to t •)
		0 H R S	6 H R S	24 H R S
# 1	м L L	1 4 2 / 2 0 0	1 3 0 / 2 0 0	1 2 0 / 2 0 0
# 2	міі	1 2 8 / 2 0 0	1 0 6 / 2 0 0	1 3 6 / 2 0 0
# 3	СВFВ	1 2 / 2 0 0	15/200	1 1 / 2 0 0
# 4	AML-ETO	151/200	150/200	162/200
# 5	AML-ETO	4 7 / 2 0 0	3 3 / 2 0 0	4 1 / 2 0 0

Increased Surface CXCR4 Expression after AMD3100

Phase I/II Study of G-CSF + AMD3100 + MEC in Relapsed or Refractory AML

<u>Eligibility Criteria</u>	<u>A</u> M D 3 1 0 0 :	240-480 m cg/kg IV qd
1. Dx of AML and either	ond 3-8	
1° refractory or relapsed	<u>G</u> -CSF	10 m cg/kg SQ on d1-8
d is e a s e		
2. Age 18-65, ECOGPS <u><</u> 2		
3.Blastct < 30,000/mm	M <u>i</u> toxantrone	s mg/m iv on a 4-8 2
	E to poside	100 m g / m l

<u>Cy</u>tarabine

MDS Protocol Design

Phase I dose-escalating trial AMD3100 (A) + G-CSF (10mcg/kg) + azacitidine (V) (75mg/m²)

Repeat for minimum 2 cycles

Expression of CXCR4, VLA-4, CD44, and E-Selectin Ligand on APL 18-4c clone

Mobilization of mouse APL in vivo by the VLA-4 inhibitor, BIO5192

Figure 21. BIO5192 induces a rapid and transient mobilization of APL blasts into the peripheral blood. Syngeneic B6129F1 recipient mice were injected with 10⁶ APL cells. Twelve days after APL injection, mice were treated with a single IV dose of 1 mg/kg BIO5192. Peripheral blood samples were collected immediately before and 0.5, 1, 3 and 6 hours after BIO5192 administration. (A) Representative FACS profiles showing mobilization of Gr1⁺CD34⁺ APL blast cells. (B) APL blast cell counts.

APL Chemosensitization by G-CSF & BIO5192

1.APL^{luc} = 10⁶ cells/mouse IV
2.G-CSF = 250 μg/kg/day SC
3.BIO5192 = 1 mg/kg IV
4.Ara-C = 500 mg/kg SC at 4h after G-CSF/AMD injection

BIO5192 and G-CSF Enhance the Effect of Chemotherapy

Effect of 3rd Generation CXCR4 Inhibitors

Stromal-Leukemia Cell Interactions

Figure 1. Protective effect of marrow microenvironment. The Hematopoietic Inductive Microenvironment (HIM) niches include osteoblasts, stromal / mesenchymal cells, endothelial cells and extracellular matrix components. AML blast quiescence, proliferation and apoptosis are influenced by receptor kinases, adhesive receptors and signaling via matrix mediated / bound chemokines and cytokines. AMD3100 and AMD3465 CXCR4 antagonist s +/- sorafenib or inhibitors of VLA-4/VCAM-1 interactions chemosensitize AML blasts within the HIM niches. Shh: sonic hedgehog, Notch, vascular endothelial factor and other adhesion receptors signals promote leukemic stem cell survival and expansion and can be targeted also to overcome AML chemoresistance.
CONCLUSIONS

- 1. AMD3100 is a safe and effective and rapidly mobilizes stem cells from mouse and man.
- 2. AMD3100 mobilized stem cells and T cells function normally in mouse competitive repopulation and GvHD models.
- 3. Infusion of AMD3100 mobilized human stem cell products into HLA matched sibling recipients can be performed in the majority of recipients after a single collection and is associated with outcomes, kinetics of engraftment and GvHD that are not dissimilar to those seen with G-CSF mobilized PBSC products.
- 4. APL cells were mobilized from the BM into PB after plerixafor administration.
- 5. Blockade of CXCR4 (via AMD3100 or G-CSF) and VLA-4 in in vivo sensitizes APL cells to chemotherapy.
- 6. We hypothesize that we can overcome resistance to chemotherapeutic agents by mobilizing AML from the BM into the PB. Mouse models and human clinical trials will test this hypothesis.
- 7. Interruption of the VLA-4/VCAM axis synergizes with CXCR4 blockade resulting in enhanced HSC and leukemic cell mobilization.

ACKNOWLEDGEMENTS

DiPersio lab

Bruno Nervi Pablo Ramirez Julie Ritchey Matt Holt Mark Schroeder JaeBok Choi William Shannon

Rettig Lab Kyle McFarland

APL KI mouse

Timothy J. Ley

Nolta Lab David Hess

L

Washington University in St. Louis School of Medicine

Molecular Imaging Center

Julie Prior David Piwinca-Worms

Transplant Team

Geoff Uy Steve Devine Sandra Lopez

Pathology

Hanlin Wang

<u>Anormed/Genzyme</u>

Gary Bridger Gary Calandra Frank Hsu