

Potential impacts of molecular aberrations

Clinical outcome:

- · Promote metastasis and poor prognosis
- · Affect response to treatment

Opportunities:

- · Develop better disease/therapeutic markers
- · Serve as therapeutic targets

Carcinoma cells invariably demonstrate complex chromosomal abnormalities NSCLC cell line (2n=70) Normal Karyotype (2n=46) the life in a fit 1 11 K 11 11 HAR HOH H HER ii. 11 14 11 11 11 11 11 11 1 11 1 111 51 68 68 88 44 - 66 ĩť 818 133 * r r 31 111)(>1111 +1 port

ABNORMALITIES OBSERVED: • aneuploidy or unbalanced gain or loss of chromosomes

marker chromosomes that cannot be classified by usual G-banding technique

Aberrant RTK signaling pathways in NSCLC

- Amplification of RTK:
 - EGFR (~10%), high polysomy (~30%)
 - PI3K-alpha (60% of SQCC)

Activating mutations:

- EGFR (10-60%)
- RAS (20%; mainly ADC)
- Met/HGF receptor (occasional)
- Collagen (discoid domain) receptors (DDR 1&2)
- Overexpression of RTK:
 - EGFR (60%: 90% SQCC, 50% ADC)
 - Met/HGFR (70%, mainly ADC)

Frequency of high EGFR protein expression in NSCLC							
	SQCC	ADC	LCC				
Rusch (1997)	94%	57%	63%				
Fontanini (1998)	57%	35%	23%				
Hsieh (2000)	92%	53%	60%				
Hirsch (2003)	82%	46%	33%				

SQCC: squamous cell ca, ADC: adenoca; LCC: large cell ca

EGFR tyrosine kinase domain mutations

EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy.

Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M. SCIENCE April 29, 2004

Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non –Small-Cell Lung Cancer to Gefitinib

Thomas J.Lynch,M.D.,Daphne W.Bell,Ph.D.,Raffaella Sordella,Ph.D.,Sarada Gurubhagavatula,M.D., Ross A.Okimoto,B.S.,Brian W.Brannigan,B.A.,Patricia L.Harris,M.S.,Sara M.Haserlat, B.A., Jeffrey G.Supko,Ph.D.,Frank G.Haluska,M.D.,Ph.D.,David K.Louis,M.D.,David C.Christiani,M.D., Jeff Settleman,Ph.D.,and Daniel A.Haber,M.D.,Ph.D.

NEW ENGLAND JOURNAL OF MEDICINE, MAY 20, 2004

"Oncogene addiction" theory (Weinstein IB. Science 2002;297:63-4)

- Dependency of tumor cells on single and predominant oncogenic activity to sustain their proliferation and/or survival
- Oncogene addiction can be the achilles heal of cancer.

EGFR tyrosine kinase domain mutations

- More common in:
 - Adenocarcinoma
 - Women
 - East Asian NSCLC patients
 - Never smokers
- **Tumors with mutations** demonstrate significantly greater response rate to EGFR inhibitor drugs gefitinib (Iressa) or erlotinib (Tarceva)

EGFR mutation predicts higher response rate to EGFR TKI treatment									
Study	No. Pts	Pts selection	ethnicity	Agent	RR of WT pts	RR of Mut pts	Resp Criteria		
Tokumo	21	recurrent disease	japanese	gefitinib	2/12 (17%)	8/9 (89%)	ECOG		
Takano	66	recurrent disease	japanese	gefitinib	3/27 (11%)	32/39 (82%)	SWOG imaging		
Kim	27	sample availability	korean	gefitinib	2/21 (10%)	6/6 (100%)	RECIST		
Han	90	consecutive	korean	gefitinib	10/73 (14%)	11/17 (65%)	WHO		
Chou	54	sample availability	chinese	gefitinib	4/21 (19%)	17/33 (52%)	ECOG		
Mean					21/154 (14%)	74/104 (71%)			
Cortes-Funes	83	sample availability	spanish	gefitinib	6/73 (9%)	6/10 (60%)	RECIST		
Cappuzzo	89	sample availability	italian	gefitinib	4/74 (5%)	8/17 (53%)	ECOG		
Ebehard	274	TRIBUTE	US	erlotinib+chemo	18/99 (18%)	8/15 (53%)	RECIST		
Mean					28/246 (11%)	22/42 (52%)			

High increases in EGFR gene copy number also predicts response to EGFR TKI drugs (Cappuzzo *et al.* J Natl Cancer Inst 2005;97: 643-55)

Gene copy number assessed by Fluorescent In Situ Hybridization (FISH)

Low copy number: ≤4 gene copies in <40% cells

High copy number: ≥4 gene copies in ≥40% cells *or* Gene/chromosome ratio >2

Patients with high EGFR gene copy have poorest prognosis, yet they are most likely to benefit from drug treatment

Biomarkers for adjuvant therapy in NSCLC patients

- Poor prognostic markers: to select patients with high risk for death from recurrence and possibly benefit from adjuvant therapy.
- Predictive markers: to select patients who are most likely to benefit from a specific adjuvant therapy

What about microarrays?

- Good evidence that gene expression profiles by microarray can distinguish:
 - tumors of different histological types
 - patients with different prognosis
- But signatures for histological typing do not overlap with those for prognosis
- Prognosis signatures are more reflective of molecular pathways important for the biology of lung cancers

Fine mapping of chromosomal abnormalities by Array-CGH

- Chromosomes are cut into fragments that are ~100 kilobases long
- Fragments are arrayed on glass slide
- Differentially labeled DNA from tumor and normal are co-hybridized to the microarrays and signals for each type of sample are detected and compared

CONCLUSIONS

- Currently there are several very promising predictive markers for selection of NSLC patients to receive targeted or adjuvant chemotherapy
- These markers still require additional validation before they can be implemented as routine clinical tests
- Best way to validate these markers are in patients involved in large phase 3 clinical trials
- The use of molecular markers for stratifying cancer patients to therapeutic options will likely come to reality during the next decade