Metastatic Epidural Spinal Cord Compression (MESCC)
Roy A. Patchell, MD
University of Kentucky Medical Center
Lexington, Kentucky USA

MESCC
Compression of the spinal cord from metastatic cancer located outside the spinal cord, subarachnoid space, and dura mater.

MESCC
- 5-14% of all cancer patients affected
- Over 20,000 new cases per year in the USA
- Major QOL/symptomatic issues
- About 1/3 of patients survive for 1 year in this condition

MESCC: Method of Spread
- 85% From vertebral body or pedicle
- 10% Through intervertebral foramina (from paravertebral nodes or mass)
- 4% Intramedullary spread
- 7% (Low) Direct spread to epidural space

MESCC: PRIMARY TUMORS
- Breast: 35%
- Lung: 20%
- Prostate: 9%
- Sarcoma: 7%
- Unknown primary: 7%
- Melanoma: 6%
- Other: 16%
100%
MESCC: FIRST SYMPTOMS

<table>
<thead>
<tr>
<th>Symptom</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>95%</td>
</tr>
<tr>
<td>Weakness</td>
<td>5%</td>
</tr>
<tr>
<td>Ataxia</td>
<td>1%</td>
</tr>
<tr>
<td>Sensory loss</td>
<td>1%</td>
</tr>
</tbody>
</table>

Symptoms and Signs at Dx

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>%</th>
<th>Signs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>96</td>
<td>Weakness</td>
<td>86</td>
</tr>
<tr>
<td>Weakness</td>
<td>76</td>
<td>Sensory loss</td>
<td>78</td>
</tr>
<tr>
<td>Bladder/bowel</td>
<td>57</td>
<td>Abnl reflexes</td>
<td>56</td>
</tr>
<tr>
<td>Sensory loss</td>
<td>51</td>
<td>Ataxia</td>
<td>7</td>
</tr>
</tbody>
</table>

MESCC: DURATION OF SYMPTOMS BEFORE DX

2-5 months (median)

MESCC: USEFUL STUDIES

- MRI
- Plain Films
- (Bone Scan)

MESCC: DDX

- Metastatic cancer
- Herniated disk
- Benign bony lesions
- Abscess
- Primary tumor
- Other
Treatment Options

- Corticosteroids
- Radiotherapy
- Surgery
- ? SRS

MESCC: STEROIDS

- Work by decreasing edema
- Buy time
- Have side effects

MESCC: RADIOTHERAPY

- Dose usually 3,000 cGy
- Takes several days to take effect
- Does not stabilize spine
- At best, only arrests progression

Laminectomy

Not effective for anteriorly situated tumors (most)
- May not decompress
- No treatment of tumor
- No stabilization

Direct Decompressive Surgery

- Relieves compression
- Removes tumor
- Stabilizes spine

MESCC: RADICAL SURGERY RESULTS

- Uncontrolled and retrospective studies
 - 66-85% ambulatory overall
 - 20-60% of nonambulatory patients walked after surgery
A Randomized Trial of Direct Decompressive Surgical Resection in the Treatment of Spinal Cord Compression Caused by Metastasis

MESSC: Operational Definition
An epidural tumor causing actual displacement of the spinal cord on MRI

MESCC: SCHEMA

Dx Steroids Stratification
MRI 100 mg Decadron then 24 mg q 8°

Tumor Type
Ambulatory Status
Spinal Stability

Radiation-Alone Arm
• RT started within 24 hours after study entry.
• 30 Gy (3 Gy x 10 fractions.)
• Port 8 cm. wide (one VB above and below the visible lesion).

Surgery + RT Arm
• Surgery within 24 hours after study entry
• Aims of surgery
 – remove as much tumor as possible
 – provide immediate decompression
 – stabilize the spine (when needed)
• RT (30 Gy) within 14 days of surgery

Surgery Guidelines
• Anterior tumors
 – Cervical spine
 • anterior approach
 – Thoracic
 • transversectomy
 • anterior approach
Surgery Guidelines

• Lateral tumors
 – lateral approach

• Posterior tumors
 – laminectomy
 – removal of any posterior tumor

Entry Criteria

1) Known cancer (Tissue Dx)
2) At least one sign or symptom
3) MRI demonstrated epidural lesion able to be approached surgically.
4) A single area of cord compression.
5) Not totally paraplegic (0/5 in both LE’s for) > 48 hours.
6) No prior RT to the area of spinal cord compression.
7) Expected survival at least 3 months
8) Age 18 or older
9) Tumor types excluded:
 - lymphomas, leukemia, multiple myeloma, germ cell tumors, primary spinal tumors

Study Endpoints

• Primary
 – Combined ambulatory rate
 – Time ambulatory after treatment
• Secondary
 – Rate and time continent after treatment
 – Time ASIA and Frankel scores stayed up
 – Narcotic and corticosteroid dose/changes
 – Survival time

Ability to Walk

Ability to take 2 or more steps with each foot (4 steps total) alone (even if a cane or walker was required)
A.S.I.A. SCORE
Sum of the muscle strength ratings (0-5) for the following mm groups:
- Triceps
- Biceps
- Wrist extensors
- Wrist Flexors
- Hand Intrinsic
- Iliopsoas
- Quadriceps
- Ankle plant flexors
- Ankle dorsiflexors
- Great Toe Extensors

Frankel Score
- A: Complete; no motor or sensory
- B: Sensory only
- C: Nonambulatory; motor useless
- D: Ambulatory with neuro symptoms
- E: Normal neurological function

Study Endpoints
- Primary
 - Combined ambulatory rate
 - Time ambulatory after treatment
- Secondary
 - Rate and time continent after treatment
 - Time ASIA and Frankel scores stayed up
 - Narcotic and corticosteroid dose/changes
 - Survival time

Cross Over
1) If began Tx \geqslant 3/5 LE strength, got surgery when dropped below 3/5.
2) If began with <3/5 (but >0/5), got surgery when dropped to 0/5.
3) If 0/5 at start, no surgery even if no improvement on RT.

Early Stopping Required
- Targeted accrual 200 patients, with planned interim analysis at 50% accrual
- Observed p-value = 0.001

Patient Accrual
- 123 Patients Evaluated
- 114 Eligible Patients
- 101 Entered in the Trial
Table 1: Patient Characteristics (N = 101)

<table>
<thead>
<tr>
<th></th>
<th>RT-alone</th>
<th>Surgery+RT</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Gender</td>
<td>73%</td>
<td>60%</td>
<td>0.48</td>
</tr>
<tr>
<td>Age (median)</td>
<td>60 yrs</td>
<td>60 yrs</td>
<td>0.92</td>
</tr>
<tr>
<td>Walking at Dx</td>
<td>69%</td>
<td>60%</td>
<td>0.80</td>
</tr>
<tr>
<td>Primary Tumor</td>
<td>Lung: 26%</td>
<td>Lung: 26%</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>Breast: 12%</td>
<td>Breast: 14%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other: 62%</td>
<td>Other: 60%</td>
<td></td>
</tr>
<tr>
<td>Continent</td>
<td>63%</td>
<td>60%</td>
<td>0.78</td>
</tr>
<tr>
<td>Frankel Score</td>
<td>0</td>
<td>D</td>
<td>0.44</td>
</tr>
<tr>
<td>ASIA Score</td>
<td>90</td>
<td>89</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Table 2: Follow-up Times

- **RT-Alone Group**: 93 days median (range 0 - 1,117 d)
- **Surgery + RT Group**: 102 days median (range 0 - 1,940 d)

P = 0.10

Table 3: Combined Ambulatory Rates

<table>
<thead>
<tr>
<th></th>
<th>Surgery + RT</th>
<th>RT</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continued to walk or regained ability to walk</td>
<td>42/50 pts (84%)</td>
<td>29/51 pts (57%)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Graph: Ambulatory Time After Tx (All)
- Surgery + RT: median 122 days
- RT-alone: median 13 days

HR=6.5 (95%CI, 2.9-9.8)
P = 0.003, log rank
Multivariate Analysis

Covariates Examined
- Treatment
- Age
- Gender
- Primary tumor
- Level and position of tumor
- Stability of spine
- Frankel and ASIA scores at entry
- Time between motor symptoms and MESCC
- Time between Dx of 1° tumor and MESCC

Suggestions:
- Surgical treatment P = 0.0017
- Frankel score at entry P = 0.0008
- Breast primary P = 0.029

Non-Ambulatory Patients (N=32)

<table>
<thead>
<tr>
<th></th>
<th>Surgery+RT</th>
<th>RT</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regained Ability to Walk after Tx</td>
<td>10/16 pts 62%</td>
<td>3/16 pts 19%</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Combined Urinary Continence Rates

<table>
<thead>
<tr>
<th></th>
<th>Surgery+RT</th>
<th>RT</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continued to be continent or regained continence</td>
<td>37/50 pts 74%</td>
<td>29/51 pts 57%</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Survival Factors

Multivariate Analysis

- Surgical treatment $P = 0.04$
- Breast cancer $P = 0.003$

Corticosteroid Use

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery + RT</td>
<td>1.6</td>
<td>0.1 - 44</td>
</tr>
<tr>
<td>RT-Alone</td>
<td>4.2</td>
<td>0 - 50</td>
</tr>
</tbody>
</table>

P = 0.0093
Narcotic Use

- **Surgery + RT**
 - Median: 0.4
 - Range: 0 - 60

- **RT-Alone**
 - Median: 4.8
 - Range: 0 - 200

\[\text{P} = 0.002 \]

Mean daily morphine equivalent dose (mgs)

30 Day Mortality and Morbidity

<table>
<thead>
<tr>
<th></th>
<th>Surgery</th>
<th>RT</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>6 %</td>
<td>14 %</td>
<td>0.32</td>
</tr>
<tr>
<td>ASIA ↓</td>
<td>14 %</td>
<td>40 %</td>
<td>0.0064</td>
</tr>
<tr>
<td>Frankel ↓</td>
<td>9 %</td>
<td>39 %</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

Post-Op Complications

- 6/50 (12%) of Pts in the Surgery + RT arm
 - 3/6 failure of fixation or graft
 - 3/6 wound infection or skin breakdown

Time in Hospital

- **RT- alone**
 - Median: 10 days
 - Range: 0 - 41 days

- **Surgery + RT**
 - Median: 10 days
 - Range: 2 - 51 days

\[\text{P} = 0.86 \]

Salvage Surgery

- 10 Patients in the RT-Alone arm (20%) crossed over to receive surgery when they deteriorated and lost ability to walk on RT.
 - 3/10 (30%) improved and regained the ability to walk
 - 4/10 (40%) had surgical complications

Day Entered Study

- P = 0.11
Conclusion

Surgery + RT is superior to RT-Alone in the treatment of spinal cord compression caused by metastasis

Conclusion

Surgery works best when given as initial treatment for MESCC

– Better overall result
– Better result in ambulatory patients
– Poor response as salvage therapy (30% vs 62% regain ability to walk)
– High complication rate after salvage therapy (40% vs 12%)

Indications for Surgery

• Unknown primary tumor
• Relapse after RT
• Progression while on RT
• Intractable pain
• Patients with a single area of cord compression who have not been totally paraplegic for longer than 48 hours.